Check Digit Calculation for Contract-IDs

Introduction 1
Mathematical Algorithm 2
Initiation for the Contract-ID 2
Setup for the Contract-ID 2
Lookup Tables 4
Example 5
Implementation 6
Acknowledgment 8

Introduction

The Contract Identifier (short: CID; also known as eMA-ID or EVCO-ID) as described by the eMI^{3} Group and standardized in ISO/IEC-15118 Annex H allows specifying an optional but highly recommended check digit. The purpose of the check digit is the detection of typing errors in human-machine interaction. The syntax of a Contract-ID is:

```
<CID> = <Country Code> <S> <Provider ID> <S> <ID Type> <ID Instance> <S> <Check Digit>
```

This syntax is based on DIN SPEC 91286 (2011), from where ISO/IEC-15118 adapts and extends it for further international use. The in there specified former check digit is not empowered to detect all common typing errors. Therefore, the here described new algorithm was introduced with the novel of the Contract-ID since it performs better than existing systems such as ISO/IEC 7064, MOD 37, 36 and ISO/IEC 7064 1271-36.

The check digit system described within this document can detect the five most frequent error types made by human operators transmitting a character sequence:

1) single error:	a-...	\rightarrow	$\cdots . . .{ }^{\text {b.... }}$
2) adjacent transposition:	$\cdots \cdot \mathrm{ab}$...	\rightarrow	ba…
3) twin error:	aa…	\rightarrow	b
4) jump transposition:	$\cdots . . a b c \cdot \cdots$	\rightarrow	
5) jump twin error:	$\cdots{ }^{\text {aca }}$.	\rightarrow	

The mathematical theory behind is explained by Chen et al in the article:
Chen, Y., Niemenmaa, M., \& Vinck, A. (2013). A check digit system over a group of arbitrary order. 2013 8th International Conference on Communications and Networking in China (CHINACOM) (pp. 897-902). IEEE. http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6694722

Mathematical Algorithm

Over the 36 alpha-numeric characters, results in the group $\left(\mathrm{Z}_{2} \times \mathrm{Z}_{2}\right) \times\left(\mathrm{Z}_{3} \times \mathrm{Z}_{3}\right)$ are to be applied. Z_{2} is the modulo group 'mod 2' and contains only 0 and 1 as values, i.e. all even values correspond to 0 and all odd values to 1 . Correspondingly, Z_{3} is the modulo group 'mod 3 ' and contains only 0,1 and 2 as values, i.e. 3 corresponds to 0,4 to 1,5 to 2,6 to 0 , etc. The steps to calculate the check digit in the theory are:

1. For each a from $0,1, \ldots 35$ there exist unique q and r such that $a=q \cdot 9+r$, where q can be considered as an element in $\left(Z_{2} \times Z_{2}\right)$; and r as an element in $\left(Z_{3} \times Z_{3}\right)$.
Thus, for a string with n characters, $\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{n}}$, we easily have $\left(\mathrm{q}_{1}, \ldots, \mathrm{q}_{\mathrm{n}}\right)$ and $\left(r_{1}, \ldots, r_{n}\right)$, where q_{i} and r_{i} are the quotient and remainder, respectively when dividing a_{i} by 9 . (In the check equation, q_{i} and r_{i} are considered as elements of $\left(\mathrm{Z}_{2} \times \mathrm{Z}_{2}\right)$ and $\left(\mathrm{Z}_{3} \times \mathrm{Z}_{3}\right)$, respectively.)
2. To calculate the check digit $\mathrm{a}_{\mathrm{n}+1}$, two check equations are used. In particular two matrices are used: the binary matrix P_{1} and the other ternary matrix P_{2}, where P_{1} is a matrix which has $x^{2}+x+1$ as its characteristic polynomial; and P_{2} is a matrix whose characteristic matrix is $\mathrm{x}^{2}+\mathrm{x}+2$.
3. Then we can calculate q_{n+1} and r_{n+1} from the following two check equations, respectively.
$\mathrm{q}_{1} \mathrm{P}_{1}+\mathrm{q}_{2} \mathrm{P}_{1}{ }^{2}+\ldots+\mathrm{q}_{\mathrm{n}} \mathrm{P}_{1}{ }^{\mathrm{n}}+\mathrm{q}_{\mathrm{n}+1} \mathrm{P}_{1}{ }^{\mathrm{n}+1}=0$ (the calculation is in Z_{2})
$\mathrm{r}_{1} \mathrm{P}_{2}+\mathrm{r}_{2} \mathrm{P}_{2}{ }^{2}+\ldots+\mathrm{r}_{\mathrm{n}} \mathrm{P}_{2}^{\mathrm{n}}+\mathrm{r}_{\mathrm{n}+1} \mathrm{P}_{2}{ }^{\mathrm{n}+1}=0$ (the calculation is in Z_{3})
The check symbol $a_{n+1}=q_{n+1} * 9+r_{n+1}$.

Initiation for the Contract-ID

P_{1} is initial set to the 2×2 binary matrix $\left(\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right)$ and P_{2} to the 2×2 ternary matrix $\left(\begin{array}{ll}0 & 1 \\ 1 & 2\end{array}\right)$.
The calculations in the two check equations are over Z_{2} and Z_{3}, respectively., i.e., in the check equation which employs P_{1}, the calculation is over Z_{2}; and in the check equation which employs P_{2}, the calculation is over Z_{3}.

For the Contract-ID, the number of digits is $n=14$, and $n+1=15$ is the check digit.

Setup for the Contract-ID

The binary and ternary matrixes to be used for the Contract-ID check digit calculation:

$$
\begin{aligned}
P_{1} & =\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right) \text { and } \\
P_{2} & =\left(\begin{array}{ll}
0 & 1 \\
1 & 2
\end{array}\right)
\end{aligned}
$$

The exponents of P_{1} over Z_{2} :

$$
\begin{aligned}
& P_{1}=P_{1}{ }^{4}=P_{1}{ }^{7}=P_{1}{ }^{10}=P_{1}{ }^{13}=\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right) \\
& P_{1}^{2}=P_{1}^{5}=P_{1}{ }^{8}=P_{1}{ }^{11}=P_{1}{ }^{14}=\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)
\end{aligned}
$$

$$
P_{1}^{3}=P_{1}^{6}=P_{1}{ }^{9}=P_{1}^{12}=P_{1}^{15}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

The exponents of P_{2} over Z_{3} :

$$
\begin{aligned}
& \mathrm{P}_{2}=\mathrm{P}_{2}{ }^{9}=\left(\begin{array}{ll}
0 & 1 \\
1 & 2
\end{array}\right) \\
& \mathrm{P}_{2}{ }^{2}=\mathrm{P}_{2}{ }^{10}=\left(\begin{array}{ll}
1 & 2 \\
2 & 2
\end{array}\right) \\
& \mathrm{P}_{2}{ }^{3}=\mathrm{P}_{2}{ }^{11}=\left(\begin{array}{ll}
2 & 2 \\
2 & 0
\end{array}\right) \\
& \mathrm{P}_{2}{ }^{4}=\mathrm{P}_{2}{ }^{12}=\left(\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right) \\
& \mathrm{P}_{2}{ }^{5}=\mathrm{P}_{2}{ }^{13}=\left(\begin{array}{ll}
0 & 2 \\
2 & 1
\end{array}\right) \\
& \mathrm{P}_{2}{ }^{6}=\mathrm{P}^{14}=\left(\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right) \\
& \mathrm{P}_{2}{ }^{7}=\mathrm{P}_{2}{ }^{15}=\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right) \\
& \mathrm{P}_{2}{ }^{8}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
\end{aligned}
$$

Lookup Tables

The correlation between the used alphabet in the Contract-ID and the values of q_{n} and r_{n} can be implemented by using the following lookup tables:

Alpha to q_{1}	
char	q1
0	0
1	0
2	0
3	0
4	0
5	0
6	0
7	0
8	0
S	0
A	0
B	0
C	0
D	0
E	0
F	0
G	0
H	0
I	1
J	1
K	1
L	1
M	1
N	1
O	1
P	1
Q	1
R	1
S	1
T	1
U	1
V	1
W	1
X	1
Y	1
Z	1

Alpha to q_{2}	
char	q2
0	0
1	0
2	0
3	0
4	0
5	0
6	0
7	0
8	0
9	1
A	1
B	1
C	1
D	1
E	1
F	1
G	1
H	1
I	0
J	0
K	0
L	0
M	0
N	0
O	0
P	0
Q	0
R	1
S	1
T	1
U	1
V	1
W	1
X	1
Y	1
Z	1

Alpha to r_{1}	
char	r1
O	0
1	0
2	0
3	1
4	1
5	1
6	2
7	2
8	2
S	0
A	0
B	0
C	1
D	1
E	1
F	2
G	2
H	2
I	0
J	0
K	0
L	1
M	1
N	1
O	2
P	2
Q	2
R	0
S	0
T	0
U	1
V	1
W	1
X	2
Y	2
Z	2

Alpha to r_{2}	
char	r2
0	0
1	1
2	2
3	0
4	1
5	2
6	0
7	1
8	2
9	0
A	1
B	2
C	0
D	1
E	2
F	0
G	1
H	2
I	0
J	1
K	2
L	0
M	1
N	2
O	0
P	1
Q	2
R	0
S	1
T	2
U	0
V	1
W	2
X	0
Y	1
Z	2
	2

Reverse lookup	
result	Check digit
0	0
16	1
32	2
4	3
20	4
36	5
8	6
24	7
40	8
2	9
18	A
34	B
6	C
22	D
38	E
10	F
26	G
42	H
1	I
17	J
33	K
5	L
21	M
37	N
9	O
25	P
41	Q
3	R
19	S
35	T
7	U
23	V
39	W
11	X
27	Y
43	Z

Example

The calculation of the check digit for the single Contract-ID 'DE83DUIEN83QGZ' is shown in the next steps as an example. (With $\mathrm{n}=14$ digits.)

STEP 1:

According to the lookup table, we get the following matrices for the digits of the given Contract-ID:

$$
\begin{aligned}
& \mathrm{D} \rightarrow\binom{\mathrm{q}_{1}}{\mathrm{r}_{1}}=\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right) \\
& \mathrm{E} \rightarrow\binom{\mathrm{q}_{2}}{\mathrm{r}_{2}}=\left(\begin{array}{ll}
0 & 1 \\
1 & 2
\end{array}\right) \\
& 8 \rightarrow\binom{\mathrm{q}_{3}}{\mathrm{r}_{3}}=\left(\begin{array}{ll}
0 & 0 \\
2 & 2
\end{array}\right) \\
& 3 \rightarrow\binom{\mathrm{q}_{4}}{\mathrm{r}_{4}}=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) \\
& \mathrm{D} \rightarrow\binom{\mathrm{q}_{5}}{\mathrm{r}_{5}}=\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right) \\
& \mathrm{U} \rightarrow\binom{\mathrm{q}_{6}}{\mathrm{r}_{6}}=\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right) \\
& \mathrm{I} \rightarrow\binom{\mathrm{q}_{7}}{\mathrm{r}_{7}}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \\
& \mathrm{E} \rightarrow\binom{\mathrm{q}_{8}}{\mathrm{r}_{8}}=\left(\begin{array}{ll}
0 & 1 \\
1 & 2
\end{array}\right) \\
& \mathrm{N} \rightarrow\binom{\mathrm{q}_{9}}{\mathrm{r}_{9}}=\left(\begin{array}{ll}
1 & 0 \\
1 & 2
\end{array}\right) \\
& 8 \rightarrow\binom{\mathrm{q}_{10}}{\mathrm{r}_{10}}=\left(\begin{array}{ll}
0 & 0 \\
2 & 2
\end{array}\right) \\
& 3 \rightarrow\left(\binom{\mathrm{q}_{11}}{\mathrm{r}_{11}}=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)\right. \\
& \mathrm{Q} \rightarrow\binom{\mathrm{q}_{12}}{\mathrm{r}_{12}}=\left(\begin{array}{ll}
1 & 0 \\
2 & 2
\end{array}\right) \\
& \mathrm{G} \rightarrow\binom{\mathrm{q}_{13}}{\mathrm{r}_{13}}=\left(\begin{array}{ll}
0 & 1 \\
2 & 1
\end{array}\right) \\
& Z \rightarrow\binom{\mathrm{q}_{14}}{\mathrm{r}_{14}}=\left(\begin{array}{ll}
1 & 1 \\
2 & 2
\end{array}\right)
\end{aligned}
$$

STEP 2.

Calculate the check digit $\binom{q_{15}}{r_{15}}$ using the following check equation:
Check equation 1) calculated over Z_{2} :

$$
\mathrm{q}_{1} \mathrm{P}_{1}+\mathrm{q}_{2} \mathrm{P}_{1}^{2}+\cdots+\mathrm{q}_{15} \mathrm{P}_{1}^{15}=0
$$

Check equation 2) calculated over Z_{3} :

$$
\mathrm{r}_{1} \mathrm{P}_{2}+\mathrm{r}_{2} \mathrm{P}_{2}^{2}+\cdots+\mathrm{r}_{15} \mathrm{P}_{2}^{15}=0
$$

The calculation gives us $\binom{q_{15}}{r_{15}}=\left(\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right)$ which corresponds to the check digit D.

STEP 3.

To validate a given check digit the steps 1 and 2 are to be applied to the ID without the appended check digit. The calculated result is to be compared to the given check digit in place.

Implementation

Due to the fact that only basic mathematical operations (,+ , lookup) on small numbers ($\{0,1,2\}$) are required, the check digit calculation and evaluation can be implemented very efficiently. Even bitwise implementation is possible, if wished. Moreover, depending on the hardware and software used, the speed for $\bmod 2$ and $\bmod 3$ can be much faster than for $\bmod 36$ or $\bmod 1271$. Finally, the same operations are applied for the calculation and evaluation which can lead to lower implementation efforts. The following considerations refer to the computational efforts per calculation/evaluation step:

STEP 1:

The lookup tables can be 'hardcoded' per alphanumeric character of the ID-String so that for each character only 1 lookup is necessary where each lookup results in 4 numbers ($\Rightarrow 14$ lookups $\cdot 4$ values $=56$ values)

STEP 2:

Only the 56 values of step 1 are used as input for the solving of the two check equations in step 2. In order to derive the solution vectors q_{15} and r_{15}, the first 14 terms $\left(x_{1} P_{m}^{1} \ldots x_{14} P_{m}^{14}\right.$, with $x=\{q, r\}$ and $m=\{1,2\})$ are to be folded at first. Due to the chosen initiation of P_{1} and P_{2}, there are only three distinct matrices for the first check equation and eight distinct matrices for the second check equation across the 14 exponents. Due to the distributive property of matric multiplication, the first 14 terms of each check equation can be aggregated to the vector terms t_{1} and t_{2} of three and eight blocks respectively. This allows for a more efficient implementation than in the accompanying reference implementation where the 14 terms are considered independently (.xls-file). For example, the aggregation term for the first check equation is:

$$
\begin{gathered}
T_{1}=\left(q_{1}+q_{4}+q_{7}+q_{10}+q_{13}\right) P_{1}+\left(q_{2}+q_{5}+q_{8}+q_{11}+q_{14}\right) P_{1}^{2} \\
+\left(q_{3}+q_{6}+q_{9}+q_{12}\right) P_{1}^{3}
\end{gathered}
$$

Folding this term within each block requires across all blocks 11 vector summations ($\Rightarrow 22$ summations). Multiplying a vector with a 2×2-matrice requires 4 multiplications and 2 summations. Since P_{1}^{3} is the identity matrice, this multiplication has to be done only for the first two blocks ($\Rightarrow 4$ summations and 8 multiplications). Considering the summing up of the three blocks ($\Rightarrow 6$ summations) eventually leads to a total effort of 32 summations and 8 multiplications for t_{1}. Correspondingly, t_{2} consists of eight blocks resulting in seven vector summations ($\Rightarrow 14$ summations). With P_{2}^{8} being the identity matrice, only the first seven blocks have to be multiplied with the corresponding 2×2-matrices ($\Rightarrow 14$ summations and 28 multiplications). Considering the summing up of the seven blocks ($\Rightarrow 14$ summations) eventually leads to a total effort of 42 summations and 28 multiplications for t_{2}.

If the used programming language does not allow for native calculations in Z_{2} and Z_{3}, the terms t_{1} and t_{2} can be calculated in Z or R (due to the distributive property of matrice operations). In this case the modulo-calculation needs to be applied after the folding on each value of both vector terms ($\Rightarrow 4$ modulo operations).

Finally, solving of the resulting two aggregated check equations $\left(t_{m}+x_{15} * P_{m}^{15}=0\right.$, with $x=\{q, r\}$ and $m=\{1,2\}$) requires two comparisons for both entries of vector q_{15} as well as three comparisons for both entries of vector $r_{15}(\Rightarrow 10$ comparisons in total; alternatively, a conventional resolving could also be done very efficiently: Due to P_{1}^{15} and P_{2}^{15} being constant, vector q could be caculated with two summations and one 'mod 2'-operation. Vector r could be calculated with two summations and two 'mod 3'-operations; for the transformation of the linear equations cf. also the comments in the accompanying .xls-file).

STEP 3:

Cf. Step 1 and 2.

CONCLUSION

All in all, each check digit can be either calculated or evaluated with the following basic mathematical operations on very small numbers (for Z_{2} in $\{0,1\}$ and for Z_{3} in $\{0,1,2\}$):

- 14 table lookups
- 36 multiplications
- 74 summations
- 4 modulo operations
- 10 comparisons

Although this algorithm may require a few more basic mathematical operations than modulo check digits, all hard- and software is easily able to conduct these calculations very fast - and you catch all the most frequent error types.

Acknowledgment

The above descriptions originate from email-exchange with Yanling Chen (Department of Telematics at NTNU, Trondheim, Norway) between 12/2012-01/2013.

The algorithm is based on:
Chen, Y., Niemenmaa, M., \& Vinck, A. (2013). A check digit system over a group of arbitrary order. 2013 8th International Conference on Communications and Networking in China (CHINACOM) (pp. 897-902). IEEE. http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6694722

Edited by Jonas Fluhr (FIR at RWTH Aachen) and Simon Schilling (smartlab Innovationsgesellschaft mbH).

